Model-based Scaffolding Technologies for Learning Web Resources

Akihiro Kashihara
The University of Electro-Communications
Japan
Learning on the Web

- Model-based scaffolding for learning
- Learning skill development

Web resources → navigation → knowledge construction

Web: Unstructured

Knowledge: no model of how to learn
Outline

- **Web as learning resources**
 - Navigation, knowledge construction, and self-regulation
 - Problems and difficulties in learning Web resources
 - Related work on solutions

- **Model-based scaffolding with cognitive tools**
 - Model of how to learn with unstructured resource
 - Cognitive tools as scaffolds for executing the model

- **Scaffolding technologies for learning skill development**
 - Self-assessment
 - Accumulating experiences of executing the model

- **Conclusion**
Web as Learning Resources

- Vast and diverse
- **Unstructured** (not so suitable for learning)
- Unreliable to reliable (miscellaneous)
Learning Process Expected

Knowledge exploration

Navigation

Resource navigation

Page navigation

Web page

Learning resource-a

Learning resource-b

Learning resource-c

Web

Knowledge construction

Learn widely/deeply

Learner

Learning goal
Learning Process Expected (Cont.)

Self-regulation

Navigation Planning

Reflection

Plan execution

Navigation

Monitor

Control

Resource navigation

Page navigation

Web page

Learning resource-a

Learning resource-c

Knowledge construction

Learning goal

Learner
Problems

Due to unstructured resources

- **Difficulties in navigation**
 - unclear relationships among pages/resources
 - how to select pages/resources to make navigation path

- **Difficulties in self-regulation**
 - concurrent with navigation and knowledge construction
 - how to monitor/control navigation and knowledge construction processes

- **Self-assessment**
 - no correct (expected) achievement of learning goal
 - how to assess subjectively/relatively
Related Work

- **Restructuring hyperspace of Web resources**
 (From unstructured to structured resources)
 - Resource-based restructuring
 - Automatic indexing [Kibby and Hayes 89],[Brusilovsky, et al. 04]
 - Manual indexing [Hasegawa and Kashihara 01],[Dieberger and Guzdial 03]
 - Model-based restructuring
 - Domain model: KBS-Hyperbook [Henze and Nejdl 01]
 - Collective knowledge model: CoWeb [Dieberger and Guzdial 03], Knowledge Sea II [Brusilovsky, et al. 04]

- **Enabling learning process**
 - Adaptive hypermedia approach [Brusilovsky 01], [De Bra 02]
 - Reducing self-regulation load
 - **Scaffolding**
 - Prompting for eliciting self-regulation process [Azevedo 04],[Narciss, et al. 07]
 - **Cognitive tools** for reifying self-regulation process as meta-cognitive one [Kashihara et al. 02/03]
Issues Addressed

- How to develop skills in learning within unstructured hyperspace?
 - Model of how to learn
 - Scaffolding technologies
 - for executing the model
 - for self-assessing the learning process
 - for accumulating experiences of model execution
Approach

Learning skill development

Experiences of learning process

1. Cognitive tools for reifying the learning process modeled

How to self-assess
How to accumulate experiences

2. Scaffolding technologies with cognitive tools
Learning Models and Cognitive Tools

- Model of navigation planning
 - PA: Planning Assistant [Kashiwara et al. 02]
- Model of knowledge construction and reflection
 - IH: Interactive History [Kashiwara et al. 03]
- Model of navigation, knowledge construction, and self-regulation
 - iLearn: Integration of PA and IH [Kashiwara et al. 10]
Learning within Unstructured Hyperspace

Self-directed navigation
Knowledge construction

Navigational learning

Hyperspace
Page
Knowledge constructed

Navigation goal-1
Navigation goal-n

Learning goal
Model of Knowledge Construction Process

Primary navigation process

Starting page → Terminal page

Navigation goals
- Supplement
- Elaborate
- Compare
- Justify
- Rethink
- Apply

Knowledge construction
Model of Reflection as Meta-Cognitive Process

Reflection

Self-regulation

Navigational learning process

- Primary navigation process-1
- Primary navigation process-2
- Primary navigation process-3
- Primary navigation process-n

Knowledge constructed
Reflection Process Expected

- Reflection on and re-learning of contents learned at starting and terminal pages
- Reflection on and reconstruction of primary navigation processes
- Reflection on and reconstruction of relationships among primary navigation processes
<table>
<thead>
<tr>
<th>IH functions</th>
<th>Knowledge construction/reflection process reified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note-taking</td>
<td>Learning/reflection on and re-learning the contents learned at starting and terminal pages</td>
</tr>
<tr>
<td>Annotated navigation history</td>
<td>Carrying out/reflecting on and reconstructing primary navigation processes</td>
</tr>
<tr>
<td>(a) Navigation goal annotation</td>
<td></td>
</tr>
<tr>
<td>(b) Link annotation</td>
<td></td>
</tr>
<tr>
<td>Knowledge map</td>
<td>Making/reflecting on and reconstructing relationships among primary navigation processes</td>
</tr>
</tbody>
</table>
IH: Interactive History

Primary navigation processes
Knowledge Map
Learning Skill Development with IH

- Scaffolding technologies
 - for self-assessment
 - **ihComparator** for comparing knowledge maps
 [Ota, Kashihara, and Hasegawa 05]
 - **Knowledge map mining** for collective knowledge generation
 [Ota and Kashihara 10]
 - for accumulating experiences of navigational learning modeled
 - **Learner-fadable scaffolding with IH** [Kashihara et al. 08]
Scaffolding for Self-Assessment

- **Context**
 - Learning a Web resource (closed hyperspace) with the same learning goal in a learning community
 - Cognitive tool used: IH

- **Goal**
 - Awareness about insufficiency of knowledge constructed

- **Methods/Technologies**
 - ihCompapator: comparing similar knowledge maps to highlight the difference
 - Knowledge map mining: mining common structure from knowledge maps as more proper achievement of the learning goal
ihComparator

Learner’s map

Similar map

Difference highlighted

Memo info.
A Web resource with the same learning goal

Knowledge maps

Knowledge map mining ▼ Differences

Collective knowledge
Lessons Learned

- Results
 - ihComparator and collective knowledge could give learners awareness about insufficiency of knowledge constructed.

- Potential (Effects expected)
 - Widening and deepening knowledge learned
 - Promoting self-assessment of knowledge construction process
Learner-Fadable Scaffolding with IH

- **Goal**
 - Improving skills in knowledge construction and reflection as modeled
 - More skillful in IH operations
 - Deeper understanding of IH operations
 - More skillful in knowledge construction and reflection without IH

- **Method/Technologies**
 - Learner-fadable scaffolding
 - Scaffold: IH functions
 - Scaffolding levels: the number of IH functions available
 - Fading IH functions to decrease the scaffolding level
Framework for Learner-Fadable Scaffolding

IH functions

Level 4: Knowledge map
Level 3: Navigation goal annotation
Level 2: Link annotation
Level 1: Note-taking

Web browser

Scaffolding
Fading
Lessons Learned

- Results
 - Learners could adjust and decrease the scaffolding levels to learn Web resources through (11 days over three weeks).
 - Learners could improve their skills in knowledge construction and reflection after learner-fadable scaffolding.

- Potential (Effects expected)
 - Understanding the necessity of IH functions
 - Knowledge construction independent of tools
Conclusion

- Model-based scaffolding for learning Web resources
 - Models of how to learn
 - Cognitive tools for reifying learning process modeled
 - Learning skill development with cognitive tools
 - scaffolding for self-assessment
 - scaffolding for accumulating experiences of model execution

- Future work
 - Detailed evaluation with scaffolding technologies
Special Thanks to:

Dr. Shinobu Hasegawa, JAIST

Students, I.S.I.R., Osaka Univ.
Hiroshi Ujii, Ryoichi Suzuki, and Masanao Sakamoto

Students, UEC.
Koichi Ota, Kazuaki Taira, Masayuki Shinya, Ryoya Kawai, Kazuo Sawazaki, and Hitomi Kawasaki
Related Publications

References

